

T

ASKMASTER

:
An Architecture Pattern for GUI Applications

Robert C. Martin

James W. Newkirk

Bhama Rao.

Introduction

This paper describes the T

ASKMASTER

 architecture pattern for developing complex GUI applica-
tions. This pattern employs the principles of OOD to guide developers in creating GUI architec-
tures that are flexible, easy to maintain, and are reusable. In this architecture we will find elements
of Document/View and Model/View/Controller, thus it builds upon the successful architectures of
others. However, you will also find that a number of problems inherent in those architectures have
been addressed in a simple and easy to implement way.

The requirements for most GUI applications are usually very volatile. Users always want new fea-
tures and extra ways of looking at and manipulating the data. Thus the software is always chang-
ing, sometimes in unexpected ways. For this reason, the software architecture of GUI applications
should be very flexible and robust. It must allow changes to be made easily, and it must be highly
decoupled so that when those changes are made they have a minimum effect. Otherwise, before
too long, the continuous changes will cause the software to degrade into an unmaintainable
morass.

The T

ASKMASTER

 architecture pattern helps to prevent this degradation, and provides for high
levels of modification, maintenance, and reuse by creating high level abstractions that provide iso-
lation boundaries between the various functions of the GUI. With this isolation in place, one can
easily change the manner in which a particular object is drawn, or the way a certain field is edited,
without affecting or recompiling other parts of the system. One can change the interactions that
drive the creation and manipulation of objects on the screen without affecting any other parts of
the software. One can add new GUI objects without affecting any of the code that manipulates the
already existing objects. And one can also reuse the screen objects independently of the interac-
tions that create and manipulate them.

The Roots

The T

ASKMASTER

 architecture has grown from the work that we at Object Mentor Inc. have done
with some significant GUI applications we have been working on for the last several years. These
applications are complex drawing tools that allow users to draw diagrams of many different sorts.
The entities in these diagrams are knowledgeable of each other and have well defined relation-
ships. Thus, there is a great deal of intelligence surrounding the way that they are manipulated and
drawn.

The platform for this project is Windows 95, and the development tool is Borland C++ 4.5 using
the OWL framework. However, the examples in this article will all be done using Visual C++ 4.2
and MFC. The fact that we can so easily change compilers and frameworks supports our claim
that T

ASKMASTER

 is an architecture

pattern

, and not a platform specific architecture.

Resources for this article.

The code examples presented in this article are snippets from actual applications that was devel-
oped along with this article. You can download the actual source files for these applications from

http://www.oma.com/C++Report/TaskMaster/Examples

.

The diagrams used in this article conform to UML 1.0. You can download the description of this
powerful design notation from

http://www.rational.com

.

The Problem

Consider a simple GUI application which allows users to draw a series of lines on a blank canvas.
These lines are drawn when the user clicks a mouse button on a point, drags to another point, and
then releases the mouse button. During this interaction the screen shows a “rubber-band” line
which follows the mouse until the button is released. Once the mouse button is released the line
remains on the screen and is added to a list of lines which the window maintains. We call this part
of the applications the

task

. We can use this task to draw many lines on the screen.

Now consider what happens when we put another window on top of our window, and then move it
away again. The lines that had been covered up need to be redrawn. The window that contains the
lines receives a

PAINT

 message. In response to this message it looks through its list of lines and
redraws them all.

In simple form, such an application might look like listings 1 and 2. Here we see some of the code
for controlling this simple application living inside the class

LineApplicationWindow

.

Listing 1: LineApplicationWindow.h

class LineApplicationWindow : public CFrameWnd
{
 public:

LineApplicationWindow(GraphicFactory* aFactory);
virtual ~LineApplicationWindow();

 private:
CPoint itsSecondPoint;
CPoint itsFirstPoint;
GraphicFactory* itsGraphicFactory;

vector<GraphicObject*> itsObjects;

CPen* itsBluePen;

afx_msg void OnMouseMove(UINT nFlags, CPoint point);
afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
afx_msg void OnLButtonUp(UINT nFlags, CPoint point);
afx_msg void OnPaint();

 DECLARE_MESSAGE_MAP()
};

#endif

Listing 2: LineApplicationWindow.cpp

LineApplicationWindow::LineApplicationWindow(GraphicFactory* aFactory)
: itsGraphicFactory(aFactory)
{

Create (NULL, “Line Application”);

itsBluePen = new CPen(0,1,RGB(255,255,0));
// when the pen is drawn in XOR mode it will be blue

}

LineApplicationWindow::~LineApplicationWindow()
{

// delete the object stored in the vector
vector<GraphicObject*>::iterator index;
for(index = itsObjects.begin(); index != itsObjects.end(); ++index)
{

GraphicObject* anObject = *index;
delete anObject;

}

delete itsBluePen;
}

void LineApplicationWindow::OnPaint()
{

CClientDC dc(this);

vector<GraphicObject*>::iterator index;
for(index = itsObjects.begin(); index != itsObjects.end(); ++index)
{

GraphicObject* anObject = *index;
anObject->Draw(dc);

}
}

void LineApplicationWindow::OnLButtonUp(UINT nFlags, CPoint point)
{
 if(GetCapture() == this)
 {
 itsSecondPoint = point;

CClientDC dc(this);

GraphicObject* anObject =
 itsGraphicFactory->MakeLine(itsFirstPoint,itsSecondPoint);

 anObject->Draw(dc);
itsObjects.push_back(anObject);

ReleaseCapture();
 }

 return;
}

void LineApplicationWindow::OnLButtonDown(UINT nFlags, CPoint point)
{
 SetCapture();
 itsFirstPoint = itsSecondPoint = point;
}

void LineApplicationWindow::OnMouseMove(UINT nFlags, CPoint point)
{

if(GetCapture() == this)
{

CClientDC dc(this);

Listing 2: LineApplicationWindow.cpp (Continued)

The simplicity and elegance of this program is compelling. (See Figure 1.) Everything is pretty
straightforward. When the left button goes down (

OnLButtonDown

), we capture the cursor (so
that we know if it leaves our window) and record the point at which the button was clicked. For
every mouse move event (

OnMouseMove

) we erase the current line and redraw it in the new posi-
tion. (This is done by drawing in XOR mode. If you don’t understand this, don’t worry about it.)
Then we record the new position. When the left button finally comes back up (

OnLButtonUp

)
we create an instance of a

GraphicLine

 from the

GraphicFactory

 and place it in the vector
that holds the list of lines. Upon reception of a PAINT event (OnPaint) we simply iterate through
the list of

GraphicObjects

 telling each one to draw.

Document/View

The simplicity of this program masks some potential problems. For example, what if we wanted
to show two windows. One with the lines drawn as before, but another text window displaying a
scrolling list of lines in the following format:

Line((0,0),(1,1));
Line((5,2),(8,3));

Each time a new line was added to one window, it would appear on the other. Clearly we are not
currently set up to do that.

Or, what if we wanted to store all the created lines into a file and then read them back later? Pre-
sumably we could do this by adding the appropriate

Save

 and

Store

 methods to the

LineAp-
plicationWindow

 class. However, why should those methods be in the same class with the
event functions such as

OnLButtonDown

? We would rather that the code that knew how to read
and write lines to a file was reusable separately from the code that knows how to create and dis-
play the lines.

This is an instance of a violation of the Open Closed Principle (OCP)

1

. By definition the window
class cannot be closed to gross changes in the way that the data is displayed. However, such

1. The Open Closed Principle, Robert C. Martin, C++ Report, January 1996

// save the current dc parameters that we are changing
int previousROP = dc.SetROP2(R2_XORPEN);
CPen* currentPen = dc.SelectObject(itsBluePen);

// draw the previous line
dc.MoveTo(itsFirstPoint);
dc.LineTo(itsSecondPoint);

// draw the new line
dc.MoveTo(itsFirstPoint);
dc.LineTo(point);
itsSecondPoint = point;

// reset previous parameters
dc.SetROP2(previousROP);
dc.SelectObject(currentPen);

}

return;
}

Listing 2: LineApplicationWindow.cpp (Continued)

changes should not affect the way that the data is stored or retrieved. By putting both functions
together in the same class, we find that we cannot close data manipulation functions against
changes in the way that the data is displayed. By the same token, we cannot close the code that
manages the display of the data against changes in the way that the data is stored and manipulated.
Clearly some kind of separation of concerns is needed.

It was issues such as these that motivated the Document/View split in many of the current frame-
works. These are also the issues that partially motivated the Model/View split in the Model/View/
Controller paradigm used in Smalltalk nearly two decades ago.

We need to separate representation and manipulation from creation and display. That is, the mech-
anisms that store and manipulate the data should be separate from, and reusable independently of,
the mechanisms that display that data to humans; or present that data to other computers. Figure 2
shows such a split.

Here we see two fundamental splits. First we see that there is an class named

Line

; and another
similar class named

GraphicLine

. The

Line

 class is a pure mathematical model of a line seg-
ment; it knows nothing about how to display or create a line on a GUI.

GraphicLine

 on the
other hand contains a

Line

. It knows nothing about the mathematical model of a line segment,
but knows how to draw a line segment on a GUI.

We see a parallel split between

LineApplicationDoc

 and

LineApplicationView

.

Lin-
eApplicationDoc

 contains a list of

Line

 objects. It knows how to save and restore them to a
file. But it knows nothing about how to draw them, or otherwise present them to a user. On the

Figure 1:

0..n

Window

LineApplication
Window

Graphic
Object

Graphic
Line

Graphic
Factory

Graphic
Factory

Implementation

other hand,

LineApplicationView

 contains a list of

GraphicObjects

 and knows how to
draw them. It also knows how to interpret the mouse to create

Line

 objects which it passes to the

LineApplicationDocument

.

An O

BSERVER1

 pattern is set up between the

LineApplicationView

 and the

LineAppli-
cationDoc

. The view observes the document and is informed whenever the document is
changed. Thus, when a new

Line

 object is added to the document, the view is notified and the
appropriate

GraphicObject

 is added to its list and drawn.

There is a distinct asymmetry in the relationships of this split.

LineApplicationView

 knows
about

LineApplicationDoc

; and

GraphicLine

 knows about

Line

. However, the reverse
is not true.

LineApplicationDoc

 could be reused with a completely different view; and

Line

 could be reused with a completely different presentation mechanism. Thus, this structure
achieves our goal of separating the manipulation of the data from its presentation. We can now
present the data in many completely different ways, without affecting the code that manipulates
that data in any way.

Listing 3 through Listing 6 shows snippets of the code that implements this example. Only the
most important bits of code are shown. There is quite a bit more code in this example, which can
be downloaded from the website.

Notice that in some ways this code is very similar to our first example. The new

LineApplica-

1. Design Patterns, Gamma, et. al, Addison Wesley, 1995

Figure 2: Document/View Solution.

View

LineApplication
View

Graphic
Object

Graphic
Line

Graphic
Factory

Graphic
Factory

Implementation
Line

Document
0..*

0..*

LineApplication
Doc

0..*

tionView

 class looks very similar to the previous

LineApplicationWindow

 class. How-
ever there are some important differences

Listing 3: LineApplicationView.h

class LineApplicationView : public CView
{
 public:

LineApplicationView();
virtual ~LineApplicationView();

LineApplicationDoc* GetDocument();

 private:
vector<GraphicObject*> itsObjects;

CPen* itsBluePen;
CPoint itsFirstPoint;
CPoint itsSecondPoint;
GraphicFactory* itsGraphicFactory;

virtual void OnInitialUpdate();
virtual void OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint);
virtual void OnDraw(CDC* aDC);
afx_msg void OnLButtonDown(UINT, CPoint);
afx_msg void OnLButtonUp(UINT, CPoint);
afx_msg void OnMouseMove(UINT, CPoint);
virtual void DeleteObjects();

DECLARE_DYNCREATE(LineApplicationView)
DECLARE_MESSAGE_MAP()

};

Listing 4: LineApplicationView.cpp

void LineApplicationView::OnDraw(CDC* aDC)
{
 vector<GraphicObject*>::iterator index;
 for(index = itsObjects.begin(); index != itsObjects.end(); ++index)
 {

GraphicObject* anObject = *index;
anObject->Draw(*aDC);

 }
}

void LineApplicationView::OnLButtonUp(UINT nFlags, CPoint point)
{
 if(GetCapture() == this)
 {

itsSecondPoint = point;
ReleaseCapture();

LineApplicationDoc* document = GetDocument();
Line* newLine = new Line(itsFirstPoint, itsSecondPoint);
document->AddLine(newLine);

 }

 return;
}

void LineApplicationView::OnLButtonDown(UINT nFlags, CPoint point)
{
 SetCapture();
 itsFirstPoint = itsSecondPoint = point;

In LineApplicationView::OnLButtonUp we are creating instances of class Line rather
than GraphicLine. Also, rather than adding the instance to our own list, we instruct the docu-
ment to add it to its list.

In LineApplicationDoc::AddLine we not only add the instance of the Line into the doc-
ument’s list, but we also call the function UpdateAllViews, passing the instance of the Line
back in the “hint” parameter. This function will find all the views associated with this document

}

void LineApplicationView::OnUpdate(CView* sender, LPARAM lHint,
 CObject* pHint)

{
 if(Line* aLine = dynamic_cast<Line*>(pHint))
 {

GraphicObject* anObject = itsGraphicFactory->MakeLine(*aLine);
itsObjects.push_back(anObject);

CClientDC dc(this);
OnPrepareDC(&dc);
anObject->Draw(dc);

 }
 else
 {

CView::OnUpdate(sender, lHint, pHint);
 }

 return;
}

Listing 5: LineApplicationDoc.h

class LineApplicationDoc : public CDocument
{
 public:

LineApplicationDoc();
virtual ~LineApplicationDoc();

virtual void AddLine(Line*);
virtual void GetLines(vector<Line*>& lines) const;

 private:
CObArray itsLines;

virtual void DeleteContents();
virtual void Serialize(CArchive& ar);

 void ClearArray();

DECLARE_DYNCREATE(LineApplicationDoc)
DECLARE_MESSAGE_MAP()

};

Listing 6: LineApplicationDoc.cpp

void LineApplicationDoc::AddLine(Line* aLine)
{
 itsLines.Add(aLine);
 SetModifiedFlag();
 UpdateAllViews(NULL, 0, aLine);
}

Listing 4: LineApplicationView.cpp (Continued)

and invoke their OnUpdate functions.

In LineApplicationView::OnUpdate we check to see if the ‘hint’ being passed in is an
instance of a Line. And if so we use the Line to create a GraphicObject which we then add
to the view’s list of GraphicObjects. Then we draw the newly created GraphicObject.

By adopting the Document/View architecture we have made it possible to completely replace the
way that the Line instances are displayed, without affecting the way that they are stored or “Seri-
alized” (i.e. read and written from files). We have also made it possible to display these lines in
many different ways, and in many different windows, within the same application.

Push Model vs. Pull Model

The OBSERVER relationship between the LineApplicationView and LineApplication-
Doc classes conforms to the push model. This means that the data that the observing view is inter-
ested in is “pushed” along with the message that notifies the observing view that the document has
changed. In our example, the Line instance was “pushed” in the “hint” argument of the OnUp-
date function.

The alternative to the “push” model is to use the “pull” model. In the “pull” model, no data is sent
in the OnUpdate message. Upon receipt of the OnUpdate message, the views must pull all the
data from the document and redisplay it all.

Clearly the push model is more efficient than the pull model. However, the pull model is more
general. When using the push model, the OnUpdate message must contain enough information
to tell the view exactly what changed. As the document becomes more complicated, and the kinds
of manipulations become more varied, the complexity and amount of information that will have to
be pushed to the view will increase.

For example, suppose that we wrote an application in which we could draw lines, circles, and
squares. If we used the push model, the OnUpdate method would have to query the ‘hint’ to see
what kind of object it was. This could amount to an if/else chain of dynamic casts; a blatant viola-
tion of the OPC! Suppose also that we could move, stretch, and delete those lines, circles, and
squares. Then, not only would we have to pass the changed object into OnUpdate; but we would
also have to tell OnUpdate the kind of change that it had experienced. If deleted, it would have to
be erased. If stretched or moved, it would have to be erased and redrawn. If merely added, it
would have to be drawn for the first time.

This extra information could be passed as some kind of enum in the second hint field of the
OnUpdate method. However, this would turn the OnUpdate method into a horrible stew of
nested if/else and switch statements. A better approach would be to use COMMAND1 objects. Con-
sider listing 7.

1. Another of the patterns from the Design Patterns book.

Listing 7: Pushing Commands

class ViewInterface
{
 public:

virtual void AddNew(Shape*) = 0;
virtual void Delete(Shape*) = 0;
virtual void Replace(Shape* old, Shape* new) = 0;

};

All the views could implement the ViewInterface class by using multiple inheritance. This is
a good example of the Interface Segregation Principle (ISP)1. The interface needed by the View-
Command class is kept separate from the view class so that the ViewCommand class does not
have to depend upon the views.

Now, when a view has decided that a square, circle, or line has been added, removed, moved, or
stretched, it can create a derivative of the ViewCommand class that knows how to manipulate the
ViewInterface class appropriately. This command instance can be passed to the document which
will then pass it in the ‘hint’ argument of the UpdateAllViews member function. All the views
will therefore receive this instance of the ViewCommand in the ‘hint’ argument of their OnUp-
date member functions. They will then invoke the Execute function and pass themselves as its
argument:
void SomeView::OnUpdate(CView* v, LPARAM lp, CObject* hint)
{

if (ViewCommand* cmd = dynamic_cast<ViewCommand*>(hint))
{

cmd->Execute(this);
}
else

CView::OnUpdate(v,lp,hint); // defer to base class.
}

By using this technique, we can add arbitrary complexity to the push model interface without cre-
ating a rats nest of if/else and switch statements in the OnUpdate functions of all the views.

The Taskmaster Architecture

What is that COMMAND mechanism really doing? It seems to be allowing one part of the view to
communicate to another part of the view! Decisions that are made in the interactive part of the
view are being communicated to the part of the view that manages what to display. Perhaps
another separation is order.

We have identified two different parts of the view object. There is the part that handles the interac-
tions with the mouse and keyboard, and then there is the part that handles display and update. And
these two appear to be quite separate. The interaction part sends messages to the document, and
the display part receives OnUpdate messages from the document.

Whenever there are two aspects to one object, we should consider whether those aspects should
be separated into two objects. We can use the Open/Closed Principle (OCP) as a way of determin-
ing the value of such a separation: Are there changes that could be made to the interaction part of
the view, that the display part of the view should be closed to? Would we want to reuse the display

1. The Interface Segregation Principle, Robert C. Martin, C++ Report, Aug ‘96

class ViewCommand
{
 public:

virtual void Execute(ViewInterface&) = 0;
};

Listing 7: Pushing Commands

portion of the view with several different variations of the interaction part?

Consider what would happen if we wanted to change the way that users create lines. Rather than
having them depress the button at the start point, drag to the end point, and then release the button;
we have them press and release the button at the start point, move the mouse to the end point, and
then press and release the button again. In the above example, this would cause some rather dras-
tic changes to OnLButtonUp, OnLButtonDown, and OnMouseMove; but would not affect
OnUpdate at all! It seems likely that different applications that use different styles of interactions
will want to reuse the OnUpdate function, and all the other aspects of object display.

Model/View/Controller

This was the issue that drove the View/Controller split in the MVC paradigm. Indeed there are
many different interaction schemes which could be used to create and manipulate objects. These
interaction schemes need not be tightly coupled to the display mechanism. Thus, in those
instances where we expect the interactions to change frequently, or where we expect many differ-
ent application to display the same data but manipulate it differently, separating the interaction
from the view is probably a good idea.

In MVC the object that controlls the interaction is called the controller. The controller is responsi-
ble for intercepting all the events from the user interface and interpreting them into commands
that manipulate the model.

Tasks

In the TASKMASTER architecture (See Figure 3.) things are a bit different. All the events coming in
from the user interface are received by the View. However, those events are then delegated to an
object that is derived from the Task interface. Each derivative of Task encapsulates an interaction
with the user and eventually communicates with the document. The appropriate derivative of Task
is selected by a menu command or click on a palette item, etc.

Figure 3 is quite similar to the Document/View model shown in Figure 2, but has some extra
classes and interfaces. We see that the LineApplicationView is associated with the Task
class. It is through this association that the user interface events received by the View are dele-
gated to the Task. LineImplementationTask is the object that encapsulates the interaction.
We will discuss it in more detail later. For the moment simply understand that this object interacts
with the user and knows when a Line object has been created.

LineTaskImplementation is associated with an abstract class called DocumentInter-
face. This is another instance of the Interface Segregation Principle (ISP). This class contains
nothing but the pure virtual function AddLine(Line*);. Notice that LineApplicationDoc
inherits from DocumentInterface. This is the pathway by which the LineTaskImplemen-
tation communicates with the LineApplicationDoc without having to depend upon it.
Thus the LineApplicationDoc class can be freely modified without affecting any of the
derivatives of Task.

LineTaskImplementation also has an association with View. This is needed since the task
must call member functions of View in order to run the interaction. One example of this is the
View::Setcapture method which must be managed by the interaction.

Finite State Machines

In TASKMASTER, we consider all Task derivatives to be finite state machines. The events that
drive the FSM are the mouse and keyboard events that are delegated by the View to the Task.
Indeed, the Task class consists of little more than a set of pure virtual functions representing
these events.

There are numerous ways of implementing finite state machines. One can use nested switch-case
statements, or some kind of table driven approach. My favorite scheme in C++ was documented in
the wonderful article “Finite State Machines: a model of behavior for C++” by Immo Hüneke,
C++ Report, January, 1991. (This was in the pre-glossy “glory” days of the C++ Report. That par-
ticular issue was 24 pages long, was edited by Rob Murry, and had a full page ad for Borland’s
Turbo C++ on page 3.)

This style of FSM is more generically documented as the STATE pattern in the Design Patterns

Figure 3: Taskmaster

View

LineApplication
View

Graphic
Object

Graphic
Line

Graphic
Factory

Graphic
Factory

Implementation
Line

Document
*

*

LineApplication
Doc

*

Task

LineTask

LineTaskFSM

Document
Interface

LineTask
Implementation

Generated by
SMC

book. The particular variation of this that we use in TASKMASTER is a pattern called: THREE
LEVEL FSM1. This pattern is convenient because it yields well to automatic code generation. We
use a tool called SMC2 to generate all our finite state machine code.

The finite state machine for adding a line is shown in Figure 4. The operation of this state machine
is quite simple. It starts its life in the Start state. When the task is associated with the view, it is
sent the Do event which kicks everything off.

The following table describes the rest of the operation of this simple FSM. You read it as follows:
“If we are in the Start state, and we receive the Do event, then we go to the WaitingFor-
FirstPoint state and call the InitTask function.

Referring back to Figure 3, we have created a class named LineTask. This class as four pure vir-
tual functions, one for each of the actions of the finite state machine. We call this class the context
of the FSM. One of the classes generated by SMC is named LineTaskFSM. This class inherits
from LineTask; allowing it to invoke the action functions declared there. Finally, we implement
the action function in a class named LineTaskImplementation. This class inherits from
LineTaskFSM in order to implement the pure virtual action functions. It also inherits from

1. From the first Pattern Languages of Program Design, Coplien & Schmidt, Addison Wesley, 1995, p383
2. SMC is freely available in the public domain. You can get it from the freeware section of our website:
http://www.oma.com

Figure 4: LineTaskFSM

Table 1: Line Task State Transition Table

Current State Event Next State Action

Start Do WaitingForFirstPoint InitTask

WaitingForFirstPoint MouseDown WaitingForSecondPoint RecordFirstPoint

WaitingForFirstPoint MovePoint WaitingForFirstPoint

WaitingForSecondPoint MouseUp Done AddLine

WaitingForSecondPoint MovePoint WaitingForSecondPoint TrackLine

Start WaitingFor
FirstPoint

WaitingFor
SecondPoin

t

Done

Do
/InitTask

MouseDown
/RecordFirstPoint

MovePoint

MouseUp
/AddLine

MovePoint
/TrackLine

Task so that it can receive the events from the view. This is, once again, an example of the ISP.
We don’t the view to know anything about the details of the task, so the view communicates with
the task through an abstract base class. This lets us change the task without affecting the view.

Task isolation

Our example application has only one task. However, a real application would have dozens or
hundreds. And each would be isolated from the associated view and document classes. The tasks
can be changed without affecting any other part of the system. Indeed, the interactions can be
reused in other applications that have different document and view classes. Also the document and
view classes can be reused in systems that have different interactions.

Task switching

In a more elaborate application, tasks will be short lived entities. They will be associated with a
view as a result of some kind of command; perhaps a menu choice, a keyboard shortcut, or a click
in the appropriate button of a palette or toolbar. Once associated with the view, the task will con-
tinue to collect events and communicate with the document class until its lifecycle ends. This may
be as a result of completing its job, or because it was somehow cancelled. Then another task will
replace it.

Thus, the current task within a view represents the global state of that view. It defines how the
view will react to events. In order to implement this, a suite of other interfaces are required within
Task. These interfaces provide for task cancellation, task restart, backstepping, pausing, etc. The
exact complement of interfaces will depend upon the GUI and application domains.

Taskmaster in (some) detail.

Listings 8 through 13 show portions of the Taskmaster implementation of our sample application.
The bulk of the document and view classes have not changed, so they are not shown here. What is
shown is the structure surrounding the tasks. Notice how all of the interaction code from the first
two examples has been moved into the class LineTaskImplementation.

Listing 8: LineTask.h

class LineTask
{
 public:

LineTask();
virtual ~LineTask();

virtual void InitTask() = 0;
virtual void RecordFirstPoint() = 0;
virtual void AddLine() = 0;
virtual void TrackLine() = 0;

};

Listing 9: LineTask.sm (the input to SMC)

FSMName LineTaskFSM
Context LineTask
Initial Start
Header linetask.h
{
Start
{

Do WaitingForFirstPoint InitTask
}

WaitingForFirstPoint
{

MouseDown WaitingForSecondPoint RecordFirstPoint
MovePoint WaitingForFirstPoint {}

}

WaitingForSecondPoint
{

MouseUp Done AddLine
MovePoint WaitingForSecondPoint TrackLine

}

Done
{}
}

Listing 10: Task.h

class Task
{
 public:

Task();
virtual ~Task();

virtual void Start() = 0;
virtual void LeftMouseUp(UINT nFlags, const CPoint& point) = 0;
virtual void LeftMouseDown(UINT nFlags, const CPoint& point) = 0;
virtual void MouseMove(UINT nFlags, const CPoint& point) = 0;

};

Listing 11: DocumentationInterface.h

class DocumentInterface
{
 public:

DocumentInterface();
virtual ~DocumentInterface();

virtual void AddLine(Line*) = 0;
};

Listing 12: LineTaskImplementation.h

class LineTaskImplementation : public LineTaskFSM,
 public Task
{
 public:

LineTaskImplementation(CView* theView,
 DocumentInterface* theDoc);

virtual ~LineTaskImplementation();

// member function defined in task
virtual void Start();
virtual void LeftMouseUp(UINT nFlags, const CPoint& point);
virtual void LeftMouseDown(UINT nFlags, const CPoint& point);
virtual void MouseMove(UINT nFlags, const CPoint& point);

// member functions defined in the actions of the FSM
virtual void InitTask();
virtual void RecordFirstPoint();

Listing 9: LineTask.sm (the input to SMC) (Continued)

virtual void AddLine();
virtual void TrackLine();

private:
CPen* itsBluePen;
CPoint itsFirstPoint;
CPoint itsSecondPoint;
CPoint itsTemporaryPoint;
GraphicFactory* itsGraphicFactory;

// for update purposes
CView* itsView;
DocumentInterface* itsDocument;

};

Listing 13: LineTaskImplementation.cpp

void LineTaskImplementation::Start()
{
 Do();
}

void LineTaskImplementation::LeftMouseUp(UINT nFlags,
 const CPoint& point)

{
 itsTemporaryPoint = point;
 MouseUp();
}

void LineTaskImplementation::LeftMouseDown(UINT nFlags,
 const CPoint& point)

{
 itsTemporaryPoint = point;
 MouseDown();
}

void LineTaskImplementation::MouseMove(UINT nFlags,
 const CPoint& point)

{
 itsTemporaryPoint = point;
 MovePoint();
}

void LineTaskImplementation::AddLine()
{
 if(itsView->GetCapture() == itsView)
 {

itsSecondPoint = itsTemporaryPoint;

// release the mouse
ReleaseCapture();

Line* newLine = new Line(itsFirstPoint, itsSecondPoint);
itsDocument->AddLine(newLine);

 }

 return;
}

void LineTaskImplementation::RecordFirstPoint()
{
 itsView->SetCapture();
 itsFirstPoint = itsSecondPoint = itsTemporaryPoint;

Listing 12: LineTaskImplementation.h (Continued)

Notice that we are still using the push model here. Notice also that all the comments that I made
about COMMAND objects still apply, except that now they can be created by the individual tasks
rather than in the view.

But it’s not simple anymore!

True. The additional decoupling and isolation has increased the complexity of the structure sev-
eral fold. A simple glance at Figures 1, 2, and 3 will serve to convince you of that. Also consider
that the total line count of example 1 is only 396 lines; whereas example 2 has grown to 1263 and
example 3 to 1985 (a good year). So we have multiplied the number of lines of code (including
comments) by nearly a factor of five!

Why incur this extra expense? For small applications you probably wouldn’t. But when the appli-
cations get large, that factor of five will decrease to nearly 1:1. In other words, TASKMASTER rep-
resents a superstructure upon which large applications can be built and maintained. As more and
more functionality gets added into that superstructure, the additional complexity of Taskmaster
will dwindle in significance. And the ability of such programs to be easily changed, maintained,
and reused will offset the extra complexity even more.

Remember, it takes complexity to manage complexity.

}

void LineTaskImplementation::TrackLine()
{
 if(itsView->GetCapture() == itsView)
 {

CClientDC dc(itsView);
itsView->OnPrepareDC(&dc);

// save the current dc parameters that we are changing
int previousROP = dc.SetROP2(R2_XORPEN);
CPen* currentPen = dc.SelectObject(itsBluePen);

// draw the previous line
dc.MoveTo(itsFirstPoint);
dc.LineTo(itsSecondPoint);

// draw the new line
dc.MoveTo(itsFirstPoint);
dc.LineTo(itsTemporaryPoint);
itsSecondPoint = itsTemporaryPoint;

// reset previous parameters
dc.SetROP2(previousROP);
dc.SelectObject(currentPen);

 }

 return;
}

void LineTaskImplementation::InitTask()
{}

Listing 13: LineTaskImplementation.cpp (Continued)

Conclusion

We, at Object Mentor Inc., have had a great deal of success with the TASKMASTER architecture.
We have used it in over a dozen GUI applications of significant size; and have found that the
reduced coupling between tasks, views and documents allows us the ability to make many
changes to the software without incurring massive recompiles. This is a large benefit when work-
ing on a 70,000 line application. We have also been able to put much of the taskmaster software
into DLLs and then reuse it in different applications.

TASKMASTER is not for everyone, or every application. But in those cases where the applications
are large, variable, and present a potential for reuse; TASKMASTER is an option to consider.

