TASKMASTER:
An Architecture Pattern for GUI Applications

Robert C. Martin
James W. Nawkirk
Bhama Rao.

I ntroduction

This paper describes the TASKMASTER architecture pattern for devel oping complex GUI applica-
tions. This pattern employs the principles of OOD to guide developersin creating GUI architec-
turesthat areflexible, easy to maintain, and are reusable. In this architecture we will find elements
of Document/View and Model/View/Controller, thusit builds upon the successful architectures of
others. However, you will also find that a number of problems inherent in those architectures have
been addressed in a simple and easy to implement way.

The requirements for most GUI applications are usually very volatile. Users always want new fea-
tures and extra ways of looking at and manipulating the data. Thus the software is always chang-
ing, sometimes in unexpected ways. For this reason, the software architecture of GUI applications
should be very flexible and robust. It must allow changes to be made easily, and it must be highly
decoupled so that when those changes are made they have a minimum effect. Otherwise, before
too long, the continuous changes will cause the software to degrade into an unmaintainable
Morass.

The TASKMASTER architecture pattern helps to prevent this degradation, and provides for high
levels of modification, maintenance, and reuse by creating high level abstractionsthat provide iso-
lation boundaries between the various functions of the GUI. With thisisolation in place, one can
easily change the manner in which a particular object isdrawn, or the way acertain field is edited,
without affecting or recompiling other parts of the system. One can change the interactions that
drive the creation and manipulation of objects on the screen without affecting any other parts of
the software. One can add new GUI objects without affecting any of the code that manipulates the
already existing objects. And one can also reuse the screen objects independently of the interac-
tions that create and manipulate them.

The Roots

The TASKMASTER architecture has grown from the work that we at Object Mentor Inc. have done
with some significant GUI applications we have been working on for the last several years. These
applications are complex drawing tools that allow users to draw diagrams of many different sorts.
The entities in these diagrams are knowledgeabl e of each other and have well defined relation-
ships. Thus, thereisagreat deal of intelligence surrounding the way that they are manipulated and
drawn.

The platform for this project is Windows 95, and the devel opment tool is Borland C++ 4.5 using
the OWL framework. However, the examplesin this article will all be done using Visual C++ 4.2
and MFC. The fact that we can so easily change compilers and frameworks supports our claim
that TASKMASTER is an architecture pattern, and not a platform specific architecture.

Resourcesfor thisarticle.

The code examples presented in this article are snippets from actual applications that was devel-
oped along with this article. You can download the actual source files for these applications from
htt p: // www. oma. conl C++Repor t / TaskMast er / Exanpl es.

The diagrams used in this article conform to UML 1.0. You can download the description of this
powerful design notation fromhtt p: / / www. rat i onal . com

The Problem

Consider asimple GUI application which allows usersto draw a series of lines on ablank canvas.
These lines are drawn when the user clicks a mouse button on a point, drags to another point, and
then releases the mouse button. During this interaction the screen shows a “ rubber-band” line
which follows the mouse until the button is released. Once the mouse button is released the line
remains on the screen and is added to alist of lines which the window maintains. We call this part
of the applications the task. We can use this task to draw many lines on the screen.

Now consider what happens when we put another window on top of our window, and then moveit
away again. Thelinesthat had been covered up need to be redrawn. The window that contains the
lines receives a PAI NT message. In response to this message it looks through its list of lines and
redraws them all.

In simple form, such an application might look like listings 1 and 2. Here we see some of the code
for controlling this ssmple application living inside the class Li neAppl i cat i onW ndow.

Listing 1. LineApplicati onWndow. h
cl'ass LineApplicationWndow : public CFranmeWid

public:
Li neAppl i cati onW ndow(G aphi cFact ory* aFactory);
virtual ~LineApplicationWndow);

private:
CPoi nt i t sSecondPoi nt;
CPoi nt i tsFirstPoint;

Graphi cFactory* itsG aphi cFactory;
vect or <G aphi cObj ect *> itsObj ects;
CPen* it sBl uePen;

af x_nsg voi d OnMbuseMove(U NT nFl ags, CPoint point);
af x_nsg voi d OnLButtonDown(Ul NT nFl ags, CPoint point);
af x_msg void OnLButtonUp(U NT nFl ags, CPoint point);
af x_msg void OnPaint();

DECLARE_MESSAGE_MAP()
1

#endi f

Li sting 2: LineApplicati onW ndow. cpp

Li neAppl i cat i onW ndow. : Li neAppl i cat i onW ndow(G aphi cFactory* aFactory)
i tsGraphi cFact ory(aFactory)

Create (NULL, “Line Application”);

Li sting 2: LineApplicationWndow. cpp (Conti nued)

i tsBl uePen = new CPen(0, 1, RGB(255, 255, 0));
/1 when the pen is drawn in XOR node it will be blue
}

Li neAppl i cati onW ndow: : ~Li neAppl i cati onW ndow()
/1 delete the object stored in the vector
vect or <G aphi cObj ect*>::iterator index;
for(index = itsOojects.begin(); index != itsObjects.end(); ++i ndex)
Graphi cObj ect* anCbj ect = *i ndex;
del ete an(Qbj ect;

}

del ete itsBl uePen;

}
voi d Li neApplicati onW ndow. : OnPai nt ()
Cd ientDC dc(this);

vect or <G aphi cQbj ect*>::iterator index;
for(index = itsObjects.begin(); index != itsCbjects.end(); ++index)

Graphi cObj ect* anObj ect = *i ndex;
anQoj ect - >Dr aw(dc) ;

}
}

voi d Li neApplicati onW ndow. : OnLBut t onUp(Ul NT nFl ags, CPoi nt point)
i f(CetCapture() == this)
i t sSecondPoi nt = point;
Cd ientDC dc(this);

Graphi cObj ect* anObj ect =
i t sG aphi cFact ory->MakeLi ne(itsFirstPoint,itsSecondPoint);

anQoj ect - >Dr aw(dc) ;
i tsOhj ects. push_back(anObj ect);

Rel easeCapt ure();
}

return;
}
voi d Li neApplicati onW ndow. : OnLBut t onDown(Ul NT nFl ags, CPoi nt point)

Set Capture();
itsFirstPoint = itsSecondPoint = point;

}
voi d Li neApplicati onW ndow. : OnMouseMove(Ul NT nFl ags, CPoi nt point)

i f(GetCapture() == this)
Cd ientDC dc(this);

Li sting 2: LineApplicationWndow. cpp (Conti nued)

/T save the current dc paranmeters that we are changi ng
i nt previ ousROP = dc. Set ROP2(R2_XORPEN) ;
CPen* currentPen = dc. Sel ect Obj ect (itsBluePen);

/1 draw the previous |ine
dc. MoveTo(i t sFirstPoint);
dc. Li neTo(itsSecondPoi nt);

/1 draw the new |ine

dc. MoveTo(itsFirstPoint);
dc. Li neTo(poi nt);

i t sSecondPoi nt = point;

/1 reset previous paraneters
dc. Set ROP2(previ ousROP) ;
dc. Sel ect Qbj ect (current Pen);

}

return;

}

The simplicity and elegance of this program is compelling. (See Figure 1.) Everything is pretty
straightforward. When the left button goes down (OnLBut t onDown), we capture the cursor (so
that we know if it leaves our window) and record the point at which the button was clicked. For
every mouse move event (OnMbuseMove) we erase the current line and redraw it in the new posi-
tion. (Thisis done by drawing in XOR mode. If you don’t understand this, don’t worry about it.)
Then we record the new position. When the left button finally comes back up (OnLBut t onUp)
we create an instance of aG aphi cLi ne from the G- aphi cFact or y and placeit in the vector
that holds the list of lines. Upon reception of a PAINT event (OnPaint) we simply iterate through
the list of G aphi cQbj ect s telling each oneto draw.

Document/View

The simplicity of this program masks some potential problems. For example, what if we wanted
to show two windows. One with the lines drawn as before, but another text window displaying a
scrolling list of linesin the following format:

Line((0,0),(1,1));

Line((5,2),(8,3));
Each time a new line was added to one window, it would appear on the other. Clearly we are not
currently set up to do that.

Or, what if we wanted to store al the created lines into afile and then read them back later? Pre-
sumably we could do this by adding the appropriate Save and St or e methods to the Li ne Ap-
pl i cati onW ndow class. However, why should those methods be in the same class with the
event functions such as OnLBut t onDown? We would rather that the code that knew how to read
and write lines to a file was reusabl e separately from the code that knows how to create and dis-
play the lines.

Thisis an instance of aviolation of the Open Closed Principle (OCP)*. By definition the window
class cannot be closed to gross changes in the way that the datais displayed. However, such

1. The Open Closed Principle, Robert C. Martin, C++ Report, January 1996

Fi gure 1:

Window
LineApplication
Window
v 0..n
Graphic -~ Graphic
Factory ~ Object
Graphic ;
Factory > Glr_?ﬂglc
Implementation

changes should not affect the way that the data is stored or retrieved. By putting both functions
together in the same class, we find that we cannot close data manipul ation functions against
changes in the way that the data is displayed. By the same token, we cannot close the code that
manages the display of the data against changesin the way that the dataiis stored and mani pul ated.
Clearly some kind of separation of concernsis needed.

It was issues such as these that motivated the Document/View split in many of the current frame-
works. These are also the issues that partially motivated the Model/View split in the Model/View/
Controller paradigm used in Smalltalk nearly two decades ago.

We need to separate representation and manipulation from creation and display. That is, the mech-
anisms that store and manipul ate the data should be separate from, and reusabl e independently of,
the mechanismsthat display that datato humans; or present that data to other computers. Figure 2
shows such a split.

Here we see two fundamental splits. First we see that there is an class named Li ne; and another
similar classnamed G- aphi cLi ne. TheLi ne classis apure mathematical model of aline seg-
ment; it knows nothing about how to display or create aline on aGUI. Gr aphi cLi ne onthe
other hand containsaLi ne. It knows nothing about the mathematical model of aline segment,
but knows how to draw aline segment on a GUI.

We see aparalel split between Li neAppl i cat i onDoc and Li neAppl i cati onVi ew Li n-
eAppl i cat i onDoc containsalist of Li ne objects. It knows how to save and restore them to a
file. But it knows nothing about how to draw them, or otherwise present them to a user. On the

Figure 2: Docunent/Vi ew Sol uti on.

0.*
View Document
LineApplication ~| LineApplication
View - Doc
v 0.*
Graphic i - Graphic
Factory i ~ Obyject
Graphic : :
Fagtpory »| Graphic > Line
. Line
Implementation
A

other hand, Li neAppl i cat i onVi ewcontainsalist of G aphi cCbj ect s and knows how to
draw them. It a'so knows how to interpret the mouse to create Li ne objectswhich it passesto the
Li neAppl i cati onDocunent .

An OBSERVER! pattern is set up between the Li neAppl i cat i onVi ewand the Li neAppl i -
cat i onDoc. The view observes the document and is informed whenever the document is
changed. Thus, when anew Li ne object is added to the document, the view is notified and the
appropriate G aphi cQoj ect isadded to itslist and drawn.

Thereisadistinct asymmetry in the relationships of this split. Li neAppl i cat i onVi ewknows
about Li neAppl i cati onDoc; and G aphi cLi ne knows about Li ne. However, the reverse
isnot true. Li neAppl i cat i onDoc could be reused with a completely different view; and

Li ne could be reused with a completely different presentation mechanism. Thus, this structure
achieves our goal of separating the manipulation of the data from its presentation. We can now
present the data in many completely different ways, without affecting the code that manipulates
that datain any way.

Listing 3 through Listing 6 shows snippets of the code that implements this example. Only the
most important bits of code are shown. There is quite a bit more code in this example, which can
be downloaded from the website.

Notice that in some ways this code is very similar to our first example. The new Li neAppl i ca-

1. Design Patterns, Gamma, et. a, Addison Wesley, 1995

ti onVi ewclasslooks very similar to the previous Li neAppl i cat i onW ndow class. How-
ever there are some important differences

Li sting 3: LineApplicationView h

class LineApplicationView : public CView
public:
Li neApplicationVi ew);
virtual ~LineApplicationView);

Li neAppl i cati onDoc* Get Docunent () ;

private:
vect or <G aphi cObj ect *> itsObj ects;
CPen* i tsBl uePen;
CPoi nt i tsFirstPoint;
CPoi nt i t sSecondPoi nt ;

Graphi cFactory* itsG aphi cFactory;

virtual void Onlnitial Update();

virtual void OnUpdat e(CVi ew* pSender, LPARAM | Hi nt, CObject* pHint);
virtual void OnDraw CDC* aDC);

af x_msg void OnLButtonDown(Ul NT, CPoint);

af x_nsg void OnLButtonUp(U NT, CPoint);

af x_msg void OnMouseMove(Ul NT, CPoint);

virtual void Del eteQbjects();

DECLARE_DYNCREATE(Li neAppl i cati onVi ew)
DECLARE_MESSAGE_MAP()

Li sting 4: LineApplicationView cpp

vol d LineAppl 1 cationVi ew : OnDr awm CDC* aDC)

vect or <G aphi cQbj ect*>::iterator index;
for(index = itsObjects.begin(); index != itsCbjects.end(); ++index)

{
Graphi cObj ect* anCbj ect = *i ndex;
anoj ect - >Dr aw(*aDC) ;
}
}

voi d Li neApplicationView : OnLBut t onUp(Ul NT nFl ags, CPoi nt point)
i f(GetCapture() == this)

i t sSecondPoi nt = point;
Rel easeCapture();

Li neAppl i cati onDoc* docunent = Get Docunent ();
Li ne* newlLi ne = new Line(itsFirstPoint, itsSecondPoint);
docurnent - >AddLi ne(newLi ne) ;

}

return;

}
voi d Li neApplicationView : OnLButt onDown(Ul NT nFl ags, CPoi nt point)

Set Capture();
itsFirstPoint = itsSecondPoi nt = point;

Listing 4. LineApplicationView cpp (Continued)

}

voi d Li neApplicationVi ew. : OnUpdat e(CVi ew* sender, LPARAM | Hi nt,
CObj ect* pHint)

i f(Line* aLine = dynam c_cast <Li ne*>(pHi nt))

{
Graphi cObj ect* anObj ect = itsG aphi cFact ory->MakeLi ne(*aLi ne);
i tsQbj ects. push_back(anObj ect);

Cd ientDC dc(this);

OnPr epar eDC(&dc) ;

anQbj ect - >Dr aw(dc) ;
el se

CVi ew. : OnUpdat e(sender, | H nt, pHint);
}

return;

}

Listing 5: LineApplicationDoc.h
class LineApplicationDoc : public CDocunent

publi c:
Li neAppl i cati onDoc();
virtual ~LineApplicationDoc();

virtual void AddLi ne(Li ne*);
virtual void GetLines(vector<Line*>& |ines) const;

private:
CbArray itsLines;

virtual void Del eteContents();
virtual void Serialize(CArchive& ar);
void O earArray();

DECLARE_DYNCREATE(Li neAppl i cati onDoc)
DECLARE_NVESSAGE_MAP()

}s

Li sting 6: LineApplicationDoc.cpp
vol d LineAppl 1 cati onDoc: : AddLi ne(LI ne* aLi ne)

i tsLi nes. Add(aLi ne);
Set Modi fi edFl ag() ;
Updat eAl | Vi ews(NULL, 0, aLine);

InLi neAppl i cati onVi ew. : OnLBut t onUp we are creating instances of classLi ne rather
than G aphi cLi ne. Also, rather than adding the instance to our own list, we instruct the docu-
ment to add it to itslist.

InLi neAppl i cati onDoc: : AddLi ne we not only add the instance of the Li ne into the doc-
ument’s list, but we also call the function Updat eAl | Vi ews, passing the instance of the Li ne
back in the “hint” parameter. This function will find al the views associated with this document

and invoke their OnUpdat e functions.

I n Li neAppl i cationVi ew : OnUpdat e we check to seeif the ‘hint’ being passed inisan
instance of aLi ne. And if sowe usetheLi ne to create aG aphi cCbj ect which we then add
to the view’'slist of G- aphi cQbj ect s. Then we draw the newly created G- aphi cQbj ect .

By adopting the Document/View architecture we have made it possible to completely replace the
way that the Li ne instances are displayed, without affecting the way that they are stored or “ Seri-
alized” (i.e. read and written from files). We have a'so made it possible to display these linesin
many different ways, and in many different windows, within the same application.

Push Model vs. Pull Model

The OBSERVER relationship between the Li neAppl i cat i onVi ewand Li neAppl i cati on-
Doc classes conformsto the push model. This means that the data that the observing view isinter-
ested inis*“pushed” aong with the message that notifies the observing view that the document has
changed. In our example, the Li ne instance was “pushed” in the “hint” argument of the OnUp-
dat e function.

The aternative to the “ push” model isto use the “pull” model. In the “pull” model, no dataiis sent
in the OnUpdat e message. Upon receipt of the OnUpdat e message, the views must pull all the
data from the document and redisplay it al.

Clearly the push model is more efficient than the pull model. However, the pull model is more
general. When using the push model, the OnUpdat e message must contain enough information
to tell the view exactly what changed. As the document becomes more complicated, and the kinds
of manipulations become more varied, the complexity and amount of information that will have to
be pushed to the view will increase.

For example, suppose that we wrote an application in which we could draw lines, circles, and
squares. If we used the push model, the OnUpdat e method would have to query the *hint’ to see
what kind of object it was. This could amount to an if/else chain of dynamic casts; a blatant viola
tion of the OPC! Suppose also that we could move, stretch, and delete those lines, circles, and
sgquares. Then, not only would we have to pass the changed object into OnUpdat e; but we would
also haveto tell OnUpdat e the kind of change that it had experienced. If deleted, it would haveto
be erased. If stretched or moved, it would have to be erased and redrawn. If merely added, it
would have to be drawn for the first time.

This extrainformation could be passed as some kind of enum in the second hint field of the
OnUpdat e method. However, this would turn the OnUpdat e method into a horrible stew of
nested if/else and switch statements. A better approach would be to use Com MAND? objects. Con-
sider listing 7.

Li sting 7: Pushi ng Conmands

class Viewnterface

publi c:
virtual void AddNew(Shape*) 0;
virtual void Del et e(Shape*) 0;
virtual void Repl ace(Shape* old,

o Il 1l

Shape* new) = O;

1. Another of the patterns from the Design Patterns book.

Li sting 7: Pushi ng Conmands

class Vi ewCommand

public:
virtual void Execute(View nterface& = 0;

All the views could implement the Vi ewl nt er f ace class by using multiple inheritance. Thisis
agood example of the Interface Segregation Principle (ISP)L. The interface needed by the Vi ew
Command classis kept separate from the view class so that the Vi ewConmand class does not
have to depend upon the views.

Now, when aview has decided that a square, circle, or line has been added, removed, moved, or
stretched, it can create a derivative of the Vi ewConmand class that knows how to manipulate the
Viewlnterface class appropriately. This command instance can be passed to the document which
will then passit in the “hint’ argument of the Updat eAl | Vi ews member function. All the views
will therefore receive thisinstance of the Vi ewConmand in the “hint” argument of their OnUp-
date member functions. They will then invoke the Execut e function and pass themselves asits
argument:

voi d SomeVi ew. : OnUpdat e(CVi ew* v, LPARAM | p, CObject* hint)

{
i f (ViewCommand* cnd = dynani c_cast <Vi ewConmand*>(hi nt))

{
cnd- >Execut e(t hi s);

}

el se
CVi ew. : OnUpdat e(v, I p,hint); // defer to base cl ass.

By using this technique, we can add arbitrary complexity to the push model interface without cre-
ating arats nest of if/else and switch statements in the OnUpdat e functions of al the views.

The Taskmaster Architecture

What is that COMMAND mechanism really doing? It seemsto be allowing one part of the view to
communicate to another part of the view! Decisions that are made in the interactive part of the
view are being communicated to the part of the view that manages what to display. Perhaps
another separation is order.

We have identified two different parts of the view object. There isthe part that handles the interac-
tions with the mouse and keyboard, and then thereisthe part that handles display and update. And
these two appear to be quite separate. The interaction part sends messages to the document, and
the display part receives OnUpdat e messages from the document.

Whenever there are two aspects to one object, we should consider whether those aspects should

be separated into two objects. We can use the Open/Closed Principle (OCP) as away of determin-
ing the value of such a separation: Are there changes that could be made to the interaction part of
the view, that the display part of the view should be closed to? Would we want to reuse the display

1. The Interface Segregation Principle, Robert C. Martin, C++ Report, Aug ‘96

portion of the view with several different variations of the interaction part?

Consider what would happen if we wanted to change the way that users create lines. Rather than
having them depress the button at the start point, drag to the end point, and then rel ease the button;
we have them press and release the button at the start point, move the mouse to the end point, and
then press and rel ease the button again. In the above example, this would cause some rather dras-
tic changesto OnLBut t onUp, OnLBut t onDown, and OnMbuseMove; but would not affect
OnUpdat e at all! It seemslikely that different applications that use different styles of interactions
will want to reuse the OnUpdat e function, and all the other aspects of object display.

M odel/View/Controller

Thiswas the issue that drove the View/Controller split in the MV C paradigm. Indeed there are
many different interaction schemes which could be used to create and manipul ate objects. These
interaction schemes need not be tightly coupled to the display mechanism. Thus, in those
instances where we expect the interactions to change frequently, or where we expect many differ-
ent application to display the same data but manipulate it differently, separating the interaction
from the view is probably a good idea.

In MV C the object that controlls the interaction is called the controller. The controller is responsi-
ble for intercepting all the events from the user interface and interpreting them into commands
that manipul ate the model.

Tasks

In the TASKMASTER architecture (See Figure 3.) things are a bit different. All the events comingin
from the user interface are received by the Vi ew However, those events are then delegated to an
object that is derived from the Task interface. Each derivative of Task encapsulates an interaction
with the user and eventually communi cates with the document. The appropriate derivative of Task
is selected by a menu command or click on a palette item, etc.

Figure 3 is quite similar to the Document/View model shown in Figure 2, but has some extra
classes and interfaces. We see that the Li neAppl i cat i onVi ewis associated with the Task
class. It isthrough this association that the user interface events received by the Vi eware dele-
gated to the Task. Li nel npl ement at i onTask isthe object that encapsulates the interaction.
Wewill discussit in more detail later. For the moment simply understand that this object interacts
with the user and knows when aLi ne object has been created.

Li neTaskl npl enment at i on isassociated with an abstract class called Docunent | nt er -

f ace. Thisis another instance of the Interface Segregation Principle (ISP). This class contains
nothing but the pure virtual function AddLi ne(Li ne*) ; . Noticethat Li neAppl i cati onDoc
inheritsfrom Docunent | nt er f ace. Thisisthe pathway by which the Li neTaskl npl enen-
t at i on communicates with the Li neAppl i cat i onDoc without having to depend upon it.
ThustheLi neAppl i cat i onDoc class can be freely modified without affecting any of the
derivatives of Task.

Li neTaskl npl errent at i on also has an association with Vi ew Thisis needed since the task
must call member functions of View in order to run the interaction. One example of thisisthe
Vi ew. : Set capt ur e method which must be managed by the interaction.

Fi gure 3: Tasknaster

LineTask

Generated by
SMC
LineTaskFSM --"""""

A

View Document

A

A

Document
Interface

Y

Task <3

A LineTask %
Implementation

LineApplication s ~ | LineApplication
View N 7 Doc

Graphic «| Graphic el
Factory ’ Object

4 4 .
Graphic ; .
Factory > G[ai\ﬁ?c > Line

Implementation

Finite State Machines

In TASKMASTER, we consider all Task derivatives to be finite state machines. The events that
drive the FSM are the mouse and keyboard events that are delegated by the View to the Task.
Indeed, the Task class consists of little more than a set of pure virtual functions representing
these events.

There are numerous ways of implementing finite state machines. One can use nested switch-case
statements, or some kind of table driven approach. My favorite schemein C++ was documented in
the wonderful article “Finite State Machines. amodel of behavior for C++” by Immo Hiineke,
C++ Report, January, 1991. (Thiswas in the pre-glossy “glory” days of the C++ Report. That par-
ticular issue was 24 pages long, was edited by Rob Murry, and had a full page ad for Borland's
Turbo C++ on page 3.)

This style of FSM is more generically documented as the STATE pattern in the Design Patterns

book. The particular variation of thisthat we usein TASKMASTER is a pattern called: THREE
LEVEL FSMZ. This pattern is convenient because it yields well to automatic code generation. We
use atool called SMC? to generate all our finite state machine code.

Thefinite state machine for adding aline is shown in Figure 4. The operation of this state machine
isquitesimple. It startsitslifeinthe St ar t state. When the task is associated with the view, it is
sent the Do event which kicks everything off.

Figure 4: LineTaskFSM

M ovePaint

Do

FirstPoint

MouseDown
/Recor dFirstPoint
Y
o M ovePaint
Vs\égjtr!r&%lz?; [TrackLine
MouseUp ° t °

/AddLine

The following table describes the rest of the operation of thissimple FSM. You read it asfollows:
“If weareinthe St art state, and we receive the Do event, then we go to the Wi t i ngFor -
Fi r st Poi nt state and call thel ni t Task function.

Table 1: LineTask State Transition Table

Current State Event Next State Action

Start Do WaitingForFirstPoint InitTask

WaitingForFirstPoint MouseDown | WaitingForSecondPoint | RecordFirstPoint

WaitingForFirstPoint MovePoint WaitingForFirstPoint
WaitingForSecondPoint | MouseUp Done AddLine
WaitingForSecondPoint | MovePoint WaitingForSecondPoint | TrackLine

Referring back to Figure 3, we have created a classnamed Li neTask. Thisclassasfour pure vir-
tual functions, one for each of the actions of the finite state machine. We call this class the context
of the FSM. One of the classes generated by SMC is named Li neTaskFSM This classinherits
from Li neTask; allowing it to invoke the action functions declared there. Finally, we implement
the action function in aclass named Li neTaskl npl enent at i on. Thisclassinherits from

Li neTaskFSMin order to implement the pure virtual action functions. It also inherits from

1. From thefirst Pattern Languages of Program Design, Coplien & Schmidt, Addison Wesley, 1995, p383
2. SMC isfreely available in the public domain. You can get it from the freeware section of our website:
http://ww. oma. com

Task so that it can receive the events from the view. Thisis, once again, an example of the ISP,
We don’t the view to know anything about the details of the task, so the view communicates with
the task through an abstract base class. This lets us change the task without affecting the view.

Task isolation

Our example application has only one task. However, areal application would have dozens or
hundreds. And each would be isolated from the associated view and document classes. The tasks
can be changed without affecting any other part of the system. Indeed, the interactions can be
reused in other applications that have different document and view classes. Also the document and
view classes can be reused in systems that have different interactions.

Task switching

In amore elaborate application, tasks will be short lived entities. They will be associated with a
view as aresult of somekind of command; perhaps a menu choice, akeyboard shortcut, or aclick
in the appropriate button of a palette or toolbar. Once associated with the view, the task will con-
tinue to collect events and communicate with the document class until itslifecycle ends. This may
be as aresult of completing itsjob, or because it was somehow cancelled. Then another task will
replace it.

Thus, the current task within a view represents the global state of that view. It defines how the
view will react to events. In order to implement this, a suite of other interfaces are required within
Task. Theseinterfaces provide for task cancellation, task restart, backstepping, pausing, etc. The
exact complement of interfaces will depend upon the GUI and application domains.

Taskmaster in (some) detail.

Listings 8 through 13 show portions of the Taskmaster implementation of our sample application.
The bulk of the document and view classes have not changed, so they are not shown here. What is
shown is the structure surrounding the tasks. Notice how all of the interaction code from the first

two examples has been moved into the class Li neTaskl npl enent at i on.

Li sting 8. LineTask.h

class LineTask

public:

Li neTask();

virtual ~LineTask();

virtual void InitTask() = O;

virtual void RecordFirstPoint() =0
virtual void AddLine() = O;

virtual void TrackLine() = O;

Listing 9: LineTask.sm (the input to SMJ)

FSMNane LI neTaskFSM
Cont ext LineTask
Initial Start

Header i netask. h

{
Start

Listing 9: LineTask.sm(the input to SMC) (Continued)

Do VWl t1 ngkor Fi r st Pol nt I'nitTask
}
Wi ti ngFor Fi r st Poi nt
MouseDown Wi t i ngFor SecondPoi nt Recor dFi r st Poi nt
MovePoi nt Wi ti ngFor Fi r st Poi nt {}
}
Wi ti ngFor SecondPoi nt
MouseUp Done AddLi ne
MovePoi nt Wi ti ngFor SecondPoi nt TrackLi ne
}
Done
{}
}

Li sting 10: Task.h

class Task

public:
Task();
virtual ~Task();

virtual void Start() = 0;

virtual void LeftMuseUp(U NT nFl ags, const CPoint& poin
virtual void LeftMuseDown(U NT nFl ags, const CPoint& po
virtual void MuseMwve(U NT nFl ags, const CPoi nté& point)

—_——+
=
—

Listing 11: Docunentationlnterface.h

class DocumentlInterface

public:
Docurent I nterface();
virtual ~DocunentlInterface();

virtual void AddLi ne(Line*) = 0;
}s

Li sting 12: LineTaskl npl enentation. h

class LineTasklinplenentation : public Li neTaskFSM
public Task

public:

Li neTaskl nmpl ement ati on(CVi ew* theVi ew,
Docunent I nterface* theDoc);

virtual ~LineTaskl nplenmentation();

/1 menber function defined in task

virtual void Start();

virtual void LeftMuseUp(U NT nFl ags, const CPoi nt& point);
virtual void LeftMuseDown(U NT nFl ags, const CPointé& point);
virtual void MuuseMve(U NT nFlags, const CPointé& point);

/1 menber functions defined in the actions of the FSM
virtual void InitTask();
virtual void RecordFirstPoint();

Li sting 12: LineTaskl npl enentation. h (Continued)

virtual void AddLine(),
virtual void TrackLine();

private:
CPen* i t sBl uePen;
CPoi nt i tsFirstPoint;
CPoi nt i t sSecondPoi nt ;
CPoi nt i tsTenporaryPoi nt;
Graphi cFact or y* i tsGraphi cFactory;

/1 for update purposes
CVi ew itsView,
Docunent | nt er f ace* i t sDocunent;

}

Li sting 13: LineTaskl npl enentation. cpp

vol d LineTasklnplenentation::Start()

{

}

voi d Li neTaskl npl ement ati on: : Left MouseUp(Ul NT nFl ags,
const CPoi nt & poi nt)

Do();

i tsTenporaryPoi nt = point;
MouseUp() ;

voi d Li neTaskl npl enent ati on: : Lef t MouseDown(Ul NT nFl ags,
const CPoi nt & poi nt)
i tsTenporaryPoint = point;
MouseDown() ;
voi d Li neTaskl npl enent ati on: : MouseMove(Ul NT nFl ags,
const CPoi nt & poi nt)

i tsTenporaryPoi nt = point;
MovePoi nt () ;

voi d Li neTaskl npl enent ati on: : AddLi ne()
if(itsView>CetCapture() == itsView
i t sSecondPoi nt = itsTenporaryPoi nt;

/1l rel ease the npuse
Rel easeCapture();

Li ne* newLine = new Line(itsFirstPoint, itsSecondPoint);
i t sDocunent - >AddLi ne(newLi ne);

}

return;

}

voi d Li neTaskl npl ement ati on: : Recor dFi r st Poi nt ()

i tsView >Set Capture();
itsFirstPoint = itsSecondPoint = itsTenporaryPoint;

Li sting 13: LineTaskl npl enentation.cpp (Continued)

}

voi d Li neTaskl npl ement ati on:: TrackLi ne()
if(itsView>CetCapture() == itsView

CC ientDC dc(itsView;
i tsVi ew >OnPrepar eDC(&dc) ;

/1l save the current dc paraneters that we are changi ng
i nt previ ousROP = dc. Set ROP2(R2_XORPEN) ;
CPen* currentPen = dc. Sel ect Obj ect (itsBluePen);

/1 draw the previous |ine
dc. MoveTo(i t sFirstPoint);
dc. Li neTo(itsSecondPoi nt) ;

/1 draw the new |ine

dc. MoveTo(itsFirstPoint);

dc. Li neTo(i t sTenpor aryPoi nt) ;

i t sSecondPoi nt = itsTenporaryPoi nt;

/1 reset previous paraneters
dc. Set ROP2(previ ousROP) ;
dc. Sel ect Qbj ect (current Pen);

}

return;

}

voi d Li neTaskl nmpl ementation:: I nitTask()

{}

Notice that we are still using the push model here. Notice also that all the comments that | made
about COMMAND objects still apply, except that now they can be created by the individual tasks
rather than in the view.

But it’s not ssimple anymore!

True. The additional decoupling and isolation has increased the complexity of the structure sev-
eral fold. A simple glance at Figures 1, 2, and 3 will serve to convince you of that. Also consider
that the total line count of example 1 isonly 396 lines; whereas example 2 has grown to 1263 and
example 3 to 1985 (a good year). So we have multiplied the number of lines of code (including
comments) by nearly afactor of fivel

Why incur this extra expense? For small applications you probably wouldn’t. But when the appli-
cations get large, that factor of five will decrease to nearly 1:1. In other words, TASKMASTER rep-
resents a superstructure upon which large applications can be built and maintained. As more and
more functionality gets added into that superstructure, the additional complexity of Taskmaster
will dwindle in significance. And the ability of such programsto be easily changed, maintained,
and reused will offset the extra complexity even more.

Remember, it takes complexity to manage complexity.

Conclusion

We, at Object Mentor Inc., have had a great deal of success with the TASKMASTER architecture.
We have used it in over a dozen GUI applications of significant size; and have found that the
reduced coupling between tasks, views and documents allows us the ability to make many
changes to the software without incurring massive recompiles. Thisis alarge benefit when work-
ing on a 70,000 line application. We have aso been able to put much of the taskmaster software
into DLLsand then reuse it in different applications.

TASKMASTER is not for everyone, or every application. But in those cases where the applications
arelarge, variable, and present a potential for reuse; TASKMASTER iS an option to consider.

